Code: 20ME4702E

IV B.Tech - I Semester – Regular / Supplementary Examinations OCTOBER 2024

INDUSTRIAL ROBOTICS (MECHANICAL ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.		
					Marks		
UNIT-I							
1	a)	What are the major components of a robotic	L2	CO1	7 M		
		system? Briefly explain their functions.					
	b)	Discuss the construction and working of a	L3	CO1	7 M		
		stepper motor with neat sketch.					
OR							
2	a)	List and explain Design considerations of	L2	CO1	7 M		
		Grippers.					
	b)	Define Industrial Robot, Work Volume and	L2	CO1	7 M		
		discuss Robot Joints.					
UNIT-II							
3	a)	What are fundamental rotation matrices?	L3	CO2	7 M		
		Obtain the 3 fundamental rotation matrices					
		for rotations about X, Y and Z axes.					
	I	1	I	1	I]		

Max. Marks: 70

	b)	What is forward and reverse kinematics of a	L3	CO2	7 M
		robot? Explain with a neat sketch.			
		OR			
4	a)	Find the forward kinematic solution for the	L3	CO2	7 M
	,	R-R planar manipulator.			
	b)	What is robot dynamics? Explain the	L3	CO2	7 M
		importance of Robot Dynamics in			
		Robotics.			
	1	UNIT-III	r		
5	a)	What is trajectory planning in robotics?	L3	CO3	7 M
		Briefly discuss the methods of Trajectory			
		Planning?			
	b)	Explain about lead through programming in	L2	CO3	7 M
		Robots.			
	1	OR			
6	a)	It is desired to have the first joint of a	L3	CO3	10 M
		six-axis robot go from initial angle of 30° to			
		a final angle of 75° in 5 seconds. Using a			
		third-order polynomial, calculate the joint			
		angle at 1, 2, 3, and 4 seconds.			
	b)	Explain WAIT, SIGNAL and DELAY	L3	CO3	4 M
		commands used in Robot programming.			
		UNIT-IV		~ ~ · ·	
7	a)	Discuss any two position sensors used in	L2	CO4	7 M
		robotics and their applications.			
	b)	Explain the construction, working of force	L2	CO4	7 M
		and torque sensor used in robotics.			

		OR					
8	a)	Explain the construction, working and importance of acoustic sensor used in robotics.	L2	CO4	7 M		
	b)	Discuss the features of the robot vision system.	L3	CO4	7 M		
	UNIT-V						
9	a)	Explain the features of a robot for an automobile industry to carry out welding operation.	L3	CO4	7 M		
	b)	Explain with neat sketch the application of robot in the following areas. Discuss them in details with respect to the type of robot configuration and drive system used.i)Inspection ii) Assembly operation	L3	CO4	7 M		
		OR		J			
10	a)	Discuss the recent development in mobile robots and micro bots.	L3	CO4	7 M		
	b)	How can industrial robots be utilized to minimize downtime and increase production uptime in manufacturing facilities?	L3	CO4	7 M		